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Abstract. Two retrieval methods for the determination of Arctic surface skin temperature and surface type based on radiance

measurements from the thermal infrared (TIR) imager VELOX (Video airbornE Longwave Observations within siX channels)

are introduced. VELOX captures TIR radiances in terms of brightness temperatures in the atmospheric window for wavelengths

from 7.7 µm to 12 µm in six spectral channels. It was deployed on the High Altitude and LOng Range research aircraft (HALO)

during the HALO–(AC)3 airborne field campaign conducted in the framework of the Arctic Amplification: Climate Relevant5

Atmospheric and SurfaCe Processes and Feedback Mechanisms (AC)3 research program. The measurements were taken over

the Fram Strait and the central Arctic in March and April 2022. To derive the surface skin temperature, radiative transfer

simulations were performed assuming cloud-free atmospheric conditions, quantifying the influence of water vapour on the

measured brightness temperature. Since this influence was negligible, it was possible to apply a single-channel retrieval of

the surface skin temperature. The derived surface skin temperatures were compared with data from the MODerate-resolution10

Imaging Spectroradiometer (MODIS). Furthermore, a pixel-by-pixel surface classification into types of open water, sea ice

water mixture, thin sea ice, and snow-covered sea ice was developed using a random forest algorithm. When the resulting

sea-ice concentrations are compared with satellite data, a mean absolute difference (MAD) of 5 % is obtained. In addition, the

classified pixels were aggregated into segments of the same surface type, providing different segment size distributions for all

surface types. When grouped by the distance to the sea ice edge, the segment size distribution shows a shift, favoring fewer but15

larger floes in the direction of the pack ice.

1 Introduction

Arctic amplification comprises Arctic-specific processes and feedback mechanisms that cause the observed accelerated warm-

ing of the Arctic region as compared to the rest of the globe (Wendisch et al., 2023a). Another signature of Arctic amplification

involves the transition to fewer, thinner, and more dynamic sea ice within the last decades (Kwok, 2018; Meier and Stroeve,20

2022; Budikova, 2009; Notz and Community, 2020). Therefore, observations of the current state of the Arctic sea ice are crit-

ical. Furthermore, the Arctic sea ice serves as a thermal insulator, regulating heat and moisture exchange between ocean and

atmosphere (Maykut and Untersteiner, 1971; Qu et al., 2019). To quantify these exchange processes measurements of sea-ice

surface skin temperature (IST) and open ocean sea surface temperature (SST) are crucial. In-situ measurements from buoys
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or ship-borne instruments, are sparse in the Arctic due to harsh conditions and logistical challenges (Smith et al., 2019). As a25

consequence, remote sensing techniques are used to determine IST and SST (Hall et al., 2004; Li et al., 2022; Nielsen-Englyst

et al., 2023). To retrieve these properties, established approaches use information supplied by observations in the wavelength

region of the atmospheric window (7 µm – 14 µm), where atmospheric absorption can mostly be neglected (McMillin and

Crosby, 1984; Liu et al., 2006). Specifically, wavelength bands centered around 11 µm and 12 µm are commonly used to re-

trieve the temperature of prevailing surface features (Hall et al., 2004). However, in the Arctic, these surface features partly30

represent small-scale phenomena, such as leads, which are narrow openings in sea ice with spatial extents ranging from meters

to kilometers. Leads may account for a significant amount of net heat energy flux in the Arctic (Qu et al., 2019; Gryschka et al.,

2023). Additionally, melt ponds, which form on sea ice due to melting processes, reduce the surface albedo by up to 45 % (Tao

et al., 2024), thereby affecting the solar radiative energy budget (Anhaus et al., 2021; Niehaus et al., 2023). Established satellite

retrievals often lack the horizontal resolution needed to discriminate the majority of narrow leads and small melt-ponds. For35

example, the horizontal resolution of the MODerate resolution Imaging Spectroradiometer (MODIS) onboard the Terra and

Aqua satellites (Willmes and Heinemann, 2015) restricts its observations to features larger than 500 m (Hall et al., 2004). The

heterogeneous spatial distribution of typical Arctic surface types, e.g., open water, thin sea ice, snow-covered sea ice, melt

ponds, and transitional types plays an important role in the determination of the Arctic Radiative Energy Budget (REB) (Di Bi-

agio et al., 2021; Anhaus et al., 2021; Wendisch et al., 2023b).40

To quantify spatial heterogeneity, surface classification algorithms have been developed, using empirically determined thresh-

olds (Massom and Comiso, 1994; Jäkel et al., 2019b; Thielke et al., 2023), including supervised (Wright and Polashenski,

2018) and unsupervised statistical learning approaches (Paul and Huntemann, 2021). Massom and Comiso (1994) used dif-

ferent wavelengths of thermal infrared (TIR) data from the Advanced Very High Resolution Radiometer (Cracknell, 1997,

AVHRR) to discriminate the surface into open water, new ice, young ice, and thick ice with a snow cover with a resolution45

of 1.1 km at nadir. The scene classification by Paul and Huntemann (2021) uses MODIS TIR data with wavelengths similar

to those in the approach of Massom and Comiso (1994), but the classification into open water, thin sea ice, thick sea ice, and

clouds is performed by a deep neural network instead of thresholds based on a histogram. As both approaches use TIR data,

they can be also applied at polar-night. In contrast, Jäkel et al. (2019b), Thielke et al. (2023),and Wright and Polashenski

(2018) rely on high-spatial resolution airborne data rather than satellite imagery. While Thielke et al. (2023) used a thermal50

imager mounted to a helicopter during polar night, both Wright and Polashenski (2018) and Jäkel et al. (2019b) derived surface

type classifications with airborne based measurements in the visible wavelengths to distinguish open-water, melt-ponds, and

sea-ice. While Thielke et al. (2023) retrieved IST to distinguish sea-ice and open water with a resolution of 1 m, Wright and

Polashenski (2018) used imagery on the decimeter scale. In summary, satellite retrievals offer wide scene and consistent time

coverage, but are severely limited in their horizontal resolution, while airborne data mostly offers highly horizontally resolved55

images, which are limited in their spatial and temporal coverage.

In this paper we describe the development of a skin temperature retrieval algorithm tailored for the TIR imager VELOX (Video

airbornE Longwave Observations within siX channels; Schäfer et al., 2022), combined with a surface type classification using

supervised machine learning techniques. A random forest algorithm (Breiman, 2001; Belgiu and Drăguţ, 2016; Wright and

2

https://doi.org/10.5194/amt-2024-3967
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



Polashenski, 2018) was used to classify the observed surface types in a pixel-by-pixel fashion into four categories: Open-Water60

(OW), Ice-Water Mix (IWM), Thin Ice (TI), and Snow-Covered ice (SC). To further enable the interpretation of spatial prop-

erties of the surface types, a segmentation was applied unifying neighboring pixels of the same surface type into segments.

The article is structured as follows: the measurements from the HALO–(AC)3 campaign and satellite data used in this study

are introduced in Sect. 2. The single-channel surface skin temperature retrieval method and the random forest algorithm used

to classify surface types are described in Sect. 3. The data are used to investigate the spatial characteristics of the classified65

surface types in Sect. 4.

2 Measurements and instrumentation

2.1 Airborne campaign

The HALO–(AC)3 airborne campaign was conducted from 7 March to 12 April 2022, to investigate the evolution of air

mass transformation processes during warm air intrusions and cold air outbreaks in the Arctic by applying a unique quasi-70

Lagrangian approach (Wendisch et al., 2024). In total, 59 flights with multiple research aircraft were realized, among them

17 flights with research aircraft HALO, which was based in Kiruna, Sweden. In Fig. 1, the locations of measurement are

depicted, together with the campaign-averaged sea-ice concentration (SIC). In addition to all HALO tracks that were flown

during the campaign (limited to the map extent; for a full overview see Wendisch et al. (2024)). Due to HALO’s range of up to

Figure 1. Overview of the data applied in this study, with the location of the data-points in orange and all flown HALO tracks in light red.

The average SIC during the campaign is shown in blue contours, with a gray solid and dashed line indicating the 10 % and 90 % SIC contour,

respectively. The data was provided by Spreen et al. (2008). Pink stars indicate the location of the training data used for the supervised

classification.
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9000 km, the measurements capture Arctic surface and atmospheric parameters on a regional scale while ensuring high spatial75

resolution when compared to satellite sensors like MODIS, AVHRR or the Sentinel-3 Sea and Land Surface Temperature

Radiometer (SLSTR; Donlon et al., 2012) The variability of different Arctic surface types (open water, freshly formed sea-

ice, snow-covered ice) is highest in the region between the ice-free open-ocean and the pack ice, resulting in a variability

of the radiative energy budget (REB) due to their differences in radiative and thermodynamic properties. Here, we focus on

small-scale variability of the surface skin temperature resulting from the inhomogeneous distribution of Arctic surface types.80

Therefore, the following analysis will be restricted to the marginal sea ice zone (MIZ), which is suitable for such investigations.

The MIZ is defined as the region where the campaign averaged sea-ice concentration (SIC) average was between 10 % and

90 %. In addition, we include data where the SIC exceeded 90 % for less than 10 min.

During the campaign, a set of remote sensing instruments was deployed on HALO (Ehrlich et al., 2024), of which only those

relevant to the analysis are briefly introduced here. As the main component of the instrumentation for this study, to capture85

two-dimensional (2D) fields of TIR radiance, the VELOX (Video airbornE Longwave Observations within siX channels) TIR

imager was operated in a nadir-viewing configuration aboard HALO during the campaign. VELOX covers a spectral range

of 7.7 to 12 µm, providing radiance measurements which are converted to brightness temperatures (Schäfer et al., 2022). At

a typical flight altitude of 10 km, the imager achieves a horizontal resolution of 10 m by 10 m per pixel, corresponding to a

field of view (FOV) spanning an area of 5 km by 6 km. VELOX acquires images with a high temporal resolution of 100 Hz.90

The instrument is operated with six spectral filters resulting in six channels, of which two are redundant broadband channels

Table 1. Spectral wavelength range and thermal noise uncertainty in terms of the net equivalent temperature difference (NETD) of VELOX

(Video airbornE Longwave Observations within siX channels) adapted from Schäfer et al. (2022)

Channel Wavelength range (µm) Symbol NETD (K)

1 7.7–12.0 TB,1 0.048

2 8.7 ± 0.6 TB,2 0.347

3 10.7 ± 0.4 TB,3 0.605

4 7.7–12.0 TB,4 0.048

5 11.7 ± 0.8 TB,5 0.473

6 12.0 ± 0.5 TB,6 0.442

(channel 1 and 4). The remaining channels are narrow-band, each centered on specific wavelengths. The uncertainty in the

measurements is characterized by the net equivalent temperature difference (NETD) for each channel. The broadband channels

have a NETD of 0.048 K, while the narrow-band channels show varying NETD values, as shown in Table 1. For the airborne

field campaign HALO–(AC)3, the corrected brightness temperature data, resampled to 1 s temporal resolution, was provided by95

Schäfer et al. (2023). To retrieve cloud cover, the HALO Microwave Package (Mech et al., 2014, HAMP) and the water vapour

differential absorption lidar WALES (Wirth et al., 2009) were installed on HALO. In addition, more than 330 dropsondes

(George et al., 2024) were released during the campaign. We have restricted our analysis to cloud-free scenes in the MIZ.

For this purpose, a cloud mask based on campaign-specific radar reflectivity and lidar backscatter coefficient thresholds was
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applied (Konow et al., 2019). To further ensure high data quality, each scene was visually examined to confirm the absence of100

clouds.

2.2 Satellite data

Independent measurements of surface skin temperature are provied by MODIS sea-ice surface temperature (IST; Hall and

Riggs, 2021) and sea surface temperature (SST; NASA, 2024). Both data sets are based on a split-window retrieval algo-

rithm, which determined surface skin temperature from the measured brightness temperatures. For the respective surface types,105

MODIS channels 1 (0.645 µm), 2 (0.865 µm), 4 (0.555 µm), 6 (1.64 µm), 31 (11 µm), 32 (12 µm) were used. The datasets are

provided with a horizontal resolution of 4 km by 4 km. Daily fields of SIC are provided by the assimilated MODIS/AMSR-2

SIC product, derived from a synthesis from MODIS and AMSR-2 (Ludwig et al., 2019). Depending on the combination of

MODIS and AMSR-2, the fields of SIC have a 5 km horizontal resolution for all conditions, and 1 km for cloud-free scenes.

Satellite images in terms of spectral radiance with high horizontal resolution are obtained from the Sentinel-2 multispectral110

imager (MSI, hereafter Sentinel-2) data. To characterize the surface reflectivity, the red (0.664 µm), green (0.559 µm), and blue

(0.492 µm) (RGB) channels are sufficient, which have a horizontal resolution of 10 m by 10 m. For the high latitudes reached

by HALO-(AC)3 observations, the revisit time of Sentinel-2 is about one day, which enables daily observations and allows

for collocation of the satellite observations with VELOX images (Spoto et al., 2012). The Sentinel-2 data are accessed via the

Google Earth Engine (GEE; Gorelick et al., 2017).115

3 Retrieval methods

3.1 Surface skin temperature

VELOX measurements provide TIR brightness temperature, TB emitted by the surface (surface skin temperature). A significant

contribution to the measured TIR TB results from emission by atmospheric gases, although the spectral bands are located in the

atmospheric window region. Under Arctic conditions atmospheric emission results in a positive bias in the measured brightness120

temperature compared to the surface skin temperature. To correct for the atmospheric emission between the airplane and the

surface, a split-window method (SW) is commonly applied (McMillin and Crosby, 1984; Li et al., 2013). Adjusted to VELOX

measurements, this approach can be formulated as follows:

TS = asw + bsw ·TB,5 + csw · (TB,5−TB,6). (1)

Here, TS represents the surface skin temperature, TB,5 is the brightness temperature measured with VELOX channel 5 installed125

on HALO in about 10 km altitude, which is least affected by water vapour absorption. The coefficients asw, bsw, and csw are

empirically determined with a linear regression. Thus, TB,5−TB,6, represents the brightness temperatures difference between

channels 5 and 6, serving as a proxy for water vapour absorption. Vincent et al. (2008) found that this brightness temperature

difference observed in the Arctic region is also sensitive to other parameters, such as atmospheric inversion height or aerosol
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particles. Their proposed single-channel algorithm (SCA; Vincent, 2019) can be adapted to VELOX as follows:130

TS = asca + bsca ·TB,5. (2)

We have performed radiative transfer simulations (RTS) to constrain the contribution of atmospheric absorption to the surface

skin temperature for both retrieval methods. The RTS were conducted with the radiative transfer library (libRadtran; Emde

et al., 2016). The simulations were initialized with temperature and humidity profiles from dropsondes that were released from

HALO during the campaign (Wendisch et al., 2024). The surface skin temperature is provided by MODIS (Hall and Riggs.,135

2021), whereas ozone content is given by the ERA5 reanalysis data (Hersbach et al., 2020). For the molecular absorption

Figure 2. Empirically determined total uncertainty of the surface skin temperature retrieval δTS as a function of VELOX measured brightness

temperature TB,5. In dark blue, the total uncertainty was calculated for the SCA, in light blue for the SW.

parameters, REPTRAN medium (Gasteiger et al., 2014) was chosen, along with the DIScrete ORdinate Radiative Transfer

solvers (DISORT; Stamnes et al., 2000). To constrain the retrieval uncertainties as a function of the atmospheric total column

water vapour concentration, the integrated water vapour (IWV) was varied from 0 kg m−2 to 50 kg m−2. During the HALO–

(AC)3 campaign, the integrated water vapour (IWV) can be confined to values less than 10 kg m−2 (Walbröl et al., 2023). To140

evaluate the two retrieval methods the total uncertainty δTS is calculated for both algorithms. Adapted from Brown and Minnett

(1999), who formulated the uncertainties for the MODIS IST retrieval, the total uncertainty of the VELOX retrievals can be

formulated as follows:

δT sw
S =

√
(δT sw

atm)2 + (δTVEL,i)2, (3)

δT sca
S =

√
(δT sca

atm)2 + (δTVEL,5)2, (4)145

δTvel,i =
√

(δT sys
vel,i)2 + (δT ran

VEL,i)2, (5)

where:

δT sys
VEL,i = A + B ·TB,i, (6)

δT ran
VEL,i = NETDB,i. (7)
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The total uncertainty of the surface skin temperature δTS is quantified as the square root of the sum of the squared uncertainties150

from the atmospheric correction, and the uncertainty introduced by VELOX δTVEL,i, which can be split into a random part

δT ran
VEL,i equivalent to the NETD, and a systematic part δT sys

VEL,i. The systematic uncertainty was parametrized based on the

measured brightness temperature TB,i in channel i. The superscripts ’sca’ and ’sw’ correspond to the respective algorithms,

while the index subscript i indicates VELOX channel i. The total uncertainty for both retrievals, depending on TB,5 and

assuming a constant δTatm, is shown in Fig. 2. Due to difference in considering only the NETD of channel 5 for the SCA and155

both NETDs of channel 5 and 6 for the SW, the SCA retrieval has a lower error across all temperature ranges. To evaluate

Figure 3. Comparison of surface temperature retrieval uncertainty (δTS) as a function of integrated water vapor (IWV, kg m−2) for single-

channel algorithm (dark blue) and split-window method (light blue).

the sensitivity of the retrievals to IWV, the total uncertainty of both retrievals as a function of IWV is shown in Fig. 3. Below

the IWV threshold of 10 kg m−2 the SCA outperforms the SW, due of the reduced NETD of using only one channel. Above

this threshold, atmospheric absorption dominates the total uncertainty favoring the SW algorithm. In summary, the single-

channel algorithm has a lower total uncertainty for IWV values below 10 kg m−2, while the split-window algorithm is a more160

suitable for more humid atmospheres. Therefore, the SCA is applicable in the Arctic region when low IWV concentrations are

present. As a consequence, we continue with the derivation of the regression coefficients asc, bsc of the SCA algorithm. For

this purpose, the RTS were performed with a temporal resolution of one second, resulting in simulated brightness temperature

values for VELOX channel 5 TB,5,RTS at HALO flight altitude. These simulated brightness temperature values at flight altitude

are linearly regressed against MODIS surface skin temperature. The resulting fit parameters for slope and offset serve as the165

single-channel coefficients:

asc = 9.051K (8)

bsc = 0.967K−1. (9)

In Fig. 4, MODIS surface skin temperature TS,MOD is plotted against the simulated brightness temperature TB,5,RTS. The

regression shows a coefficient of determination of R2 = 0.99 and a root mean square error (RMSE) of 0.47 K. Substituting170

7

https://doi.org/10.5194/amt-2024-3967
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 4. MODIS skin temperature TS,MOD is compared to the simulated brightness temperature at HALO flight altitude for VELOX channel

5 (11.5 µm) TRTS,B5.

δsc
atm = 0.47 K and NETD = 0.473 K into Eq. 4, the total uncertainty of the SCA algorithm using RTS with ERA5 IWV data

was computed to be:

δTS = 1.1± 0.3K, (10)

where the range of δTS reflects the error for different measurement conditions.

3.2 Surface type classification175

To distinguish different surface types, we adapted established definitions (Miao et al., 2015; Wright and Polashenski, 2018;

Jäkel et al., 2019a). As no melt-ponds were observed during HALO-(AC)3, this surface type was omitted. To illustrate the

surface types, a Sentinel-2 true color image is analyzed in Fig. 5. All surface types applied in this study are present in this

scene and characterized in Tab. 2.

The image analysis consists of three steps. First, the VELOX 2D-images are preprocessed. Next, a random forest (RFA)180

classification algorithm is applied for pixel-wise surface typing. Finally, a segmentation algorithm is used to identify and

summarized areas of same surface type.

3.2.1 Preprocessing images

Since the temporal sampling rate of the VELOX data applied here from Schäfer et al. (2023) is 1 Hz, and the typical cruise

speed of HALO is about 200 m s−1, it is possible to construct pushbroom-like images (PLI) of the corresponding nadir strips185
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Figure 5. True color image provided by Sentinel-2 on 04.04.2022 at 13:35:00 local time. The four colored rectangles represent the surface

types selected for this study: sea-ice free open-water (green), ice-water mix (purple), thin sea ice (gray), and snow-covered sea ice (yellow)

at each timestep. With this technique, the effect of the viewing azimuth angle (VZA) on the measured brightness temperature

can be neglected. Furthermore, georeferencing is performed for each data point of the PLI, providing crucial information about

the geographic location of the measurement. This process incorporates the geographical position, flight altitude, and attitude

data from HALO, as well as the calculated viewing azimuth and zenith angles for the applied lens and detector combination of

VELOX, and the measured mounting direction of VELOX.190

3.2.2 Random forest classification

To determine the surface type, a random forest (RFA) was implemented in a pixel-by-pixel fashion, i.e., each pixel is analyzed

individually. The RFA is a supervised machine learning method that constructs ensembles of decision trees, which are fitted to

user-defined ground-truth data. It combines the interpretability of decision trees with the robustness to noise characteristics of

other ensemble methods (Breiman, 2017; James et al., 2023). For the implementation of the RFA, the machine learning library195

autogluon (Erickson et al., 2020) was used, allowing for a comparison of multiple machine learning methods. Compared to

other supervised learning algorithms, the RFA demonstrated comparable accuracy, while significantly reducing computation

time, suggesting it as a preferable choice (not shown).

Sentinel-2 images classified manually were used as the ground truth. For labeling these images, the Computer Vision An-

notation Tool (Sekachev et al., 2020, CVAT) was used. In total, 58 VELOX images from 10 different research flights were200

labeled, resulting in over 13 million labeled pixels. The locations of the training data are depicted as pink stars in Fig. 1.

The training data were sampled randomly from the available data (Sentinel-2 image available, cloud free) and subsequently

filtered to resemble all latitudes equally. Seven input features, as defined in Tab. 3, are applied to the RFA. All parameters are
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Table 2. Surface types with short characterization, corresponding abbreviations, and representative images from Fig. 5.

Abbr. Surface Type Image

OW

Open Water: sea-ice

free surfaces of open

ocean water, including

leads.

IWM

Sea Ice-Water Mixture:

unconsolidated frazil

and grease ice, mixed

with open ocean water.

TI

Thin Sea Ice: freshly

formed sea ice (nilas),

appearing dark or grey

in optical wavelengths.

SC

Snow-Covered Sea Ice:

sea-ice covered with a

snow layer.

calculated from VELOX brightness temperature data. The accuracy of a multi-class classification problem can be expressed by

the ratio of correct to all predictions. When validated in five-fold cross-validation setup, the RF showed an accuracy of 87 %205

with respect to the test data. To further assess the performance of the RFA, a confusion matrix is shown in Fig. 6. The highest

accuracy is achieved on the SC surface type (95 %), followed by the OW surface type (90 %). The TI surface type achieves a

lower overall accuracy with 71 %, due to transitional nature of this surface type. In Fig. 7 b) the initial RFA classification for an

example scene is shown. A common challenge when using RFA for image classification are the speckles, as seen in this figure.

To address this issue, segmentation is required, which is described in the next section.210

10

https://doi.org/10.5194/amt-2024-3967
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 3. Input parameters as processed from VELOX measurements and used in the pixel-wise RF surface type classification.

Variable Description

TB,1 VELOX channel 1 (7.7 µm to 12 µm).

∆TB,2-5 Brightness temperature difference (BTD) be-

tween channels centered at 8.54 µm and

11.7 µm.

∆TB,3-5 BTD between channels centered at 10.7 µm and

11.7 µm.

∆TB,5-6 BTD between channels centered at 11.7 µm and

12 µm.

|∇TB,1| Magnitude of the horizontal gradient of broad-

band brightness temperature as a measure of

horizontal inhomogeneity.

TB,1 Mean of TB,1 in a 5× 5 pixel neighborhood.

σTB,1 Standard deviation of TB,1 in a 5×5 pixel neigh-

borhood.

Figure 6. Confusion matrix of the RFA prediction, showing the percentage of the correctly predicted pixels on the diagonal. The off-diagonal

elements represent the false positive and false negative values.

3.2.3 Segmentation

To assign the predefined surface types from Sect. 3.2 to the retrieved fields of surface skin temperature, the PLIs are subjected

to the open-source image segmentation algorithm segment-anything (Kirillov et al., 2023, SAM;). The SAM algorithm image

segments on the basis of color-gradients and points that are placed by the user. The initiall segmentation of an exemplary

scene is shown in Fig 7 c). Although the model was not fine-tuned, i.e., not trained with a specific user dataset, it proves a215

high capability to segment previously unseen data in a zero-shot fashion (Wu and Osco, 2023; Ren et al., 2024). This offers

an advantage over training for a segmentation algorithm, which is often demanding in terms of data points and computational
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Figure 7. Overview of surface classification and segmentation results for the pushbroom-like image captured on 04. April 2022 from 13:36:14

to 13:38:31 UTC. a) Broadband brightness temperature TB,1 (7.7 µm–12 µm) as pushbroom-like image b) Initial surface type classification

using the random forest algorithm (RFA), identifying open-water, thin ice, and snow-covered ice. c) Initial segmentation using the segment-

anything model (SAM), with numbered segments representing the ten largest areas for illustration. d) Final surface type classification: the

most common surface type within each segment from (c) was assigned, and a surface skin temperature threshold was used to sort the ice-

water mix class (IWM) form OW. (e) Final segmentation, where new segments were assigned to all connected regions of the same surface

type derived from (d), with the largest segments again highlighted by their respective numbers.
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time.

To automatically generate a segmentation mask with SAM, a grid of points is placed on the PLI and then recursively shifted

to avoid over-segmentation of the images. This means, that initially a grid is constructed on the image, and the algorithm220

searches for segments close to the gridpoints. To ensure stable segmentation, the grid is divided into smaller subgrids, which

are then shifted relative to the initial grid points. This process is repeated three times. Since some over-segmentation still

occurs, resulting in smaller predicted segments than those identified by humans, information from surface classification is

added to the segmentation. First, each segment identified by SAM is subjected to a majority vote, meaning the most frequently

occurring surface type within a particular segment is assigned to that segment. Finally, the segments are obtained by merging225

neighboring segments of the same surface class. This results in a natural image segmentation, which is illustrated in the lowest

panel of Fig. 7 e). To further ensure the quality of Open-Water classified pixels, a threshold is applied sorting all pixels cooler

than -2.5 °C into the Ice-Water Mix Class

4 Results and Discussion

4.1 Surface skin temperature analysis230

In Fig. 8, the VELOX retrieved surface skin temperature TS,VELOX is compared to the MODIS surface skin temperature TS,MOD,

obtained from Hall and Riggs. (2021) and NASA (2024), showing the coefficient of determinationR2 to be equal to 0.96.

Figure 8. Scatter plot of MODIS TS,MOD against VELOX retrieved TS,VEL, with VELOX data averaged to match the MODIS pixel size.

The appended frequency distributions show the corresponding surface skin temperature distributions for both datasets.
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Figure 9. a) Mean TS of different surface type segments, weighted by segment size and aggregated over 10 km bins from the sea-ice edge

into the internal ice zone. b) Mean TS over all Marginal sea-ice zone segments.

For this comparison, the instantaneous FOVs of the single VELOX pixels were combined by averaging to fit the MODIS

pixel-size, allowing for a direct comparison between their two datasets. The RMSE was determined to be 2.4 K with a bias

of -2.4 K, indicating a underestimation of surface skin temperature by VELOX, TS,VEL, with respect to MODIS, TS,MOD. As235

the data set comprises multiple days, it is essential to provide information on the location of the data. To simplify this spatial

information into a scalar, the data are grouped by its distance to the sea-ice edge (positive direction into the internal ice-zone).

As the individual pixels have been georeferenced, their relative distance to the nearest sea ice edge (defined by campaign-

averaged SIC values between 9-11 %) is computed. For this, the distance of each spatial segment center to the temporally

closest available AMSR-2/MODIS SIC pixel is calculated. The mean surface skin temperature colored by surface types is240

plotted in Fig. 9a against the distance to the sea-ice edge. In Fig. 9b, the mean surface skin temperature of all segments TS,

weighted by their size is shown. A clear separation between the TS of different surface types is observed as expected. The

values from Fig. 9b are displayed together with the corresponding error range in Tab. 4.

4.2 Spatial analysis of surface types

From the segmentation, we retrieve the corresponding segment size, mean temperature and standard deviation of each seg-245

ment. The results are illustrated in Fig. 10, showing the spatial distance of each segment center to the nearest sea-ice edge

plotted against the corresponding surface type. The fraction of the open water surface type-fraction decreases from 40 % to be-

low 5 % in the first 20 km, while the fraction of the snow-covered surface type-fraction becomes increasingly dominant when

approaching the pack-ice. The thin-ice and ice-water-mix surface types maintain relatively constant fractions of occurrence

across all considered distances from the ice edge, with no clear trend observed. When compared with the provided SIC from250

MODIS/AMSR-2, the computed RMSE and mean absolute difference (MAD) are 8 % and 5 %, respectively. For this compari-

son, the nearest available SIC data from the satellite product were matched with a similar FOV of the VELOX PLI. The errors

result from the temporal mismatch between both data sets, as MODIS/AMSR-2 SIC is only available as daily gridded product.
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Figure 10. Fraction of total area for the four surface classes as a function of the distance to the closest sea-ice edge. The red dashed line

indicates the open water fraction (1.0 - SIC) from MODIS/AMSR-2 (Ludwig et al., 2019).

When comparing the bias, i.e., the difference between VELOX SIC and MODIS/AMSR-2 SIC, an underestimation of 3 % or

an overestimation of 5 % is observed, depending on whether only open-water classified pixels are considered as open water or255

if both open-water and ice-water-mix classified pixels are included. As shown in Fig. 10, the open-water fraction and the area

fractions derived from VELOX agree within the given error range.

4.3 Segment size distribution

Since the segmentation enables the measurement of individual segment sizes, an analysis of the spatial structure of the data

is performed. Here, we extend the concept of the floe size distribution (FSD; Rothrock and Thorndike, 1984; Herman, 2010;260

Bateson et al., 2022) to the segment size distribution NSSD, resulting in the following description:

NSSD(xSEG) = C · (xSEG)β . (11)

Here, xSEG represents the segment size in units of m2, C is an empirical constant, and β is the dimensionless power-law

exponent describing the scaling of the distribution. The closer the exponent is to zero, the more NSSD favors large segments.

This approach simplifies the complex spatial heterogeneity of the MIZ by expressing the scaling of NSSD using β, a single265

scalar value In Fig. 11, the segment size density NSSD (in units of km−2) for different surface types is displayed in a double-

logarithmic graph as a function of the segment size size, xSEG. In addition, the individual distributions are fitted with a linear

model. The slope of each linear fit corresponds to the exponent of the power-law distribution, β. The different βi computed

for each surface type are shown in Tab 4. We conclude that, in addition to the different sea-ice types, the ice-water-mix and

open-water surface types also follow a power-law distribution. The computed β for, e.g. the snow-covered sea-ice type are in270

the range of corresponding literature data, with values ranging from -0.91 to -2.9 (Herman, 2010). To gain more insight into

the spatial heterogeneity within the MIZ, we fit the NSSD of the snow-covered segments to 10 km sized bins of distance to the

sea-ice edge (in pack-ice direction). In Fig. 12, the size power-law exponent β is shown as a function of the distance to the
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Figure 11. Double-logarithmic graph of the segment size density (colored dots) for all four surface types as a function of the segment size.

The surface types are color-coded, indicating open water (green), ice-water-mix (purple), thin ice (grey), and snow-covered ice (yellow).

Linear fits (colored lines) are added in the respective surface type color, providing the exponents listed at the top right.

Table 4. Summary of mean surface temperature TS, power-law exponents β, and goodness of fit R2 for the corresponding NSSD, for different

surface types.

TS β R2

OW −3.2± 1.1 −1.68± 0.04 0.987

IWM −12.1± 2.3 −1.60± 0.02 0.992

TI −17.0± 1.4 −1.25± 0.02 0.996

SC −22.2± 2.0 −1.50± 0.02 0.992

sea-ice edge for the different surface types. A linear trend is fitted only to the TI data, suggesting significance with a R2 = 0.76

and a p-value less than 0.001. The increase in β from -1.6 to -1.3 reflects a physical characteristic of the MIZ. Closer to the275

sea-ice edge, a higher number of smaller segments is observed (more negative β) due to intensified floe breakup, whereas

larger floes (less negative β) become more prevalent further into the MIZ, where ocean wave propagation is more attenuated

(Herman, 2010; Denton and Timmermans, 2022).

5 Summary and conclusions

During the HALO–(AC)3 airborne field campaign, conducted in the area from the Fram Strait to the North Pole in March and280

April 2022, an extensive dataset of surface and atmospheric properties was collected from a variety of instruments mounted

on three research aircraft (Wendisch et al., 2024). Here we use data compiled by the High Altitude and LOng range research
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Figure 12. Power-law exponent β of the segment size distribution NSSD, binned in 10 km steps, starting from the sea-ice edge into the

direction of the internal ice zone by surface type. For panel a) open-water, b) ice-water mix, and d) snow-covered ice, no trend is observed.

For panel c) thin ice, a significant linear trend is observed.

aircraft (HALO), which was instrumented with radar, lidar, a dropsonde launching facility, microwave radiometer, and various

spectral imagers. Here we have used data collected by the VELOX (Video airbornE Longwave Observations within siX chan-

nels; Schäfer et al., 2022) thermal infrared (TIR) imaging system, which was installed On HALO in a nadir viewing direction.285

Due to its fast-spinning filter-wheel (100 Hz) equipped with multiple spectral band-pass and long-pass filters, a high spatial

resolution of 10 m by 10 m pixel size for a target at 10 km distance is achieved with VELOX providing valuable high-resolution

TIR spectral radiances expressed in brightness temperatures.

Using VELOX data from HALO–(AC)3, which are publicly available from Schäfer et al. (2023), a single-channel (SCA)

surface skin temperature retrieval based on linear coefficients derived from radiative transfer simulations (RTS) is adapted.290

Comparisons with multiple-channel retrievals and surface skin temperature products from the MODerate resolution Imaging

Spectroradiometer (MODIS; Hall et al., 2004; Hall and Riggs., 2021; NASA, 2024), provide convincing agreement, with

a coefficient of determination of R2 = 0.96 and a bias of -2.4 K. To categorize the obtained surface skin temperature fields,

a surface type classification algorithm is developed based on publicly available software tools combined with physically rea-

sonable thresholds applied to regenerated push-broom images from the initial brightness temperature data. The resulting two-295

dimensional fields provide segment-vise information of the surface type, which can then be analyzed in combination with , e.g.,

the retrieved surface skin temperature. The data are classified into Open-Water (OW), Thin-Ice (TI), Ice-Water-Mix (IWM),

and Snow-Covered-Ice (SC) surface type.

With the surface skin temperature and surface classification retrievals, important parameters with high spatial resolution are

obtained. When computing the resulting Sea-Ice Concentration (SIC) from the surface classification, a reasonable agreement300
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(bias ≈ 5 %) with the MODIS/AMSR-2 product is achieved, if the IWM surface type is assigned to be "sea-ice-free". Addi-

tional sensitivity studies will be required to assess the influence of this surface type. The established classification serves as

a promising foundation for these investigations. The retrieved power-law segment size statistics are generally consistent with

values reported in the literature (Denton and Timmermans, 2022). For the snow-covered surface type, these findings align

with those of Herman (2010), who observed power-law exponents ranging from -0.91 to -2.9 and reported an increase in the305

exponent when transitioning from the sea-ice edge to the interior ice zone. Overall, although the temporal duration and spatial

extent of the presented data set is limited, the agreement with other studies emphasizes its value for the sea-ice community.

Future analysis will focus on leads in the inner Arctic, using the presented methods.
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